On the streaming complexity of fundamental geometric problems
نویسندگان
چکیده
In this paper, we focus on lower bounds and algorithms for some basic geometric problems in the one-pass (insertion only) streaming model. The problems considered are grouped into three categories — (i) Klee’s measure (ii) Convex body approximation, geometric query, and (iii) Discrepancy Klee’s measure is the problem of finding the area of the union of hyperrectangles. Under convex body approximation, we consider the problems of convex hull, convex body approximation, linear programming (LP) in fixed dimensions. The results for convex body approximation implies a property testing type result to find if a query point lies inside a convex polyhedron. Under discrepancy, we consider both the geometric and combinatorial discrepancy. For all the problems considered, we present (randomized) lower bounds on space. Most of our lower bounds are in terms of approximating the solution with respect to an error parameter . We provide approximation algorithms that closely match the lower bound on space for most of the problems.
منابع مشابه
Online Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features
Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...
متن کاملCritical Path Method for Flexible Job Shop Scheduling Problem with Preemption
This paper addressed a Flexible Job shop Scheduling Problem (FJSP) with the objective of minimization of maximum completion time (Cmax) which job splitting or lot streaming is allowed. Lot streaming is an important technique that has been used widely to reduce completion time of a production system. Due to the complexity of the problem; exact optimization techniques such as branch and bound alg...
متن کاملClassification of Streaming Fuzzy DEA Using Self-Organizing Map
The classification of fuzzy data is considered as the most challenging areas of data analysis and the complexity of the procedures has been obstacle to the development of new methods for fuzzy data analysis. However, there are significant advances in modeling systems in which fuzzy data are available in the field of mathematical programming. In order to exploit the results of the researches on ...
متن کاملOn Fundamental Limits of Robust Learning
We consider the problems of robust PAC learning from distributed and streaming data, which may contain malicious errors and outliers, and analyze their fundamental complexity questions. In particular, we establish lower bounds on the communication complexity for distributed robust learning performed on multiple machines, and on the space complexity for robust learning from streaming data on a s...
متن کاملModelling and Scheduling Lot Streaming Flexible Flow Lines
Although lot streaming scheduling is an active research field, lot streaming flexible flow lines problems have received far less attention than classical flow shops. This paper deals with scheduling jobs in lot streaming flexible flow line problems. The paper mathematically formulates the problem by a mixed integer linear programming model. This model solves small instances to optimality. Moreo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018